资源类型

期刊论文 574

会议视频 17

年份

2023 62

2022 59

2021 56

2020 52

2019 40

2018 36

2017 24

2016 26

2015 39

2014 27

2013 18

2012 15

2011 16

2010 13

2009 22

2008 17

2007 26

2006 8

2005 3

2004 4

展开 ︾

关键词

决策支持系统 3

能源 3

二氧化碳 2

农业科学 2

创造力支持系统 2

固体氧化物燃料电池 2

显微硬度 2

有色金属工业 2

氧化铈 2

秦巴山脉区域 2

细水雾 2

绿色化工 2

重金属 2

重金属废水 2

2022全球工程前沿 1

2035 1

BRT专用道 1

CD44 1

Deep metal mining 1

展开 ︾

检索范围:

排序: 展示方式:

Catalytic oxidation of CO over Pt/Fe

Zihao Li, Yang Geng, Lei Ma, Xiaoyin Chen, Junhua Li, Huazhen Chang, Johannes W. Schwank

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1244-y

摘要: Abstract • Strong metal-support interaction exists on Pt/Fe3O4 catalysts. • Pt metal particles facilitate the formation of oxygen vacancies on Fe3O4. • Fe3O4 supports enhance the strength of CO adsorption on Pt metal particles. The self-inhibition behavior due to CO poisoning on Pt metal particles strongly impairs the performance of CO oxidation. It is an effective method to use reducible metal oxides for supporting Pt metal particles to avoid self-inhibition and to improve catalytic performance. In this work, we used in situ reductions of chloroplatinic acid on commercial Fe3O4 powder to prepare heterogeneous-structured Pt/Fe3O4 catalysts in the solution of ethylene glycol. The heterogeneous Pt/Fe3O4 catalysts achieved a better catalytic performance of CO oxidation compared with the Fe3O4 powder. The temperatures of 50% and 90% CO conversion were achieved above 260°C and 290°C at Pt/Fe3O4, respectively. However, they are accomplished on Fe3O4 at temperatures higher than 310°C. XRD, XPS, and H2-TPR results confirmed that the metallic Pt atoms have a strong synergistic interaction with the Fe3O4 supports. TGA results and transient DRIFTS results proved that the Pt metal particles facilitate the release of lattice oxygen and the formation of oxygen vacancies on Fe3O4. The combined results of O2-TPD and DRIFTS indicated that the activation step of oxygen molecules at surface oxygen vacancies could potentially be the rate-determining step of the catalytic CO oxidation at Pt/Fe3O4 catalysts. The reaction pathway involves a Pt-assisted Mars-van Krevelen (MvK) mechanism.

关键词: Strong metal-support interaction (SMSI)     Surface oxygen vacancy     Lattice oxygen     Magnetite     Platinum metals    

FeNi/Al-Ce-O催化剂上的乙烷干重整——组成诱导的金属-载体强相互作用 Article

张涛, 刘志成, 叶迎春, 王毓, 杨贺勤, 高焕新, 杨为民

《工程(英文)》 2022年 第18卷 第11期   页码 173-185 doi: 10.1016/j.eng.2021.11.027

摘要:

在页岩气革命的背景下,乙烷干重整因在化学原料生产和碳减排方面的潜力而备受关注。本研究通过X射线光电子能谱、H2程序升温还原和能量散射X射线谱等手段,揭示了一种组成诱导的金属-载体强相互作用。氧化铈中Al的引入增强了金属与载体之间的相互作用,显著影响了Al-Ce-O载体表面FeNi活性组分的分散度,从而提升了FeNi/Al-Ce-O催化剂的乙烷干重整反应性能。随着载体中Al含量的增加,负载FeNi催化剂的乙烷和二氧化碳的转化率与转换频率(TOF)以及一氧化碳选择性和产率都呈现先增大后减小的趋势,与载体的理论有效表面积(TESA)的变化趋势相同。其中,Al含量为50%的FeNi/Ce-Al0.5催化剂在873 K下具有最好的乙烷干重整反应性能。结合原位傅里叶变换红外光谱(FTIR)分析观察到,Al的引入不仅增加了表面Ce3+和氧空位的含量,同时也促进了表面活性组分的分散,提升了负载FeNi催化剂的乙烷干重整性能。

关键词: 乙烷干重整     金属-载体强相互作用     二氧化碳     氧化铈     氧空位     反应机理    

Excellent performance of Cu-Mn/Ti-sepiolite catalysts for low-temperature CO oxidation

Yong Song,Lisha Liu,Zhidan Fu,Qing Ye,Shuiyuan Cheng,Tianfang Kang,Hongxing Dai

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0908-8

摘要: Sepiolite is clay mineral with a 2:1 layered structure. Ti-pillars have an impact on physicochemical property of the sample. 30Mn5Cu/Ti-Sep shows excellent catalytic activity for the oxidation of CO. The interaction, reducibility, and oxygen mobility govern the activity. The Ti-modified sepiolite (Ti-Sep)-supported Mn-Cu mixed oxide ( Mn5Cu/Ti-Sep) catalysts were synthesized using the co-precipitation method. The materials were characterized by the X-ray diffraction scanning electron microscope, N adsorption-desorption, H -TPR, O -TPD, and XPS techniques, and their catalytic activities for CO oxidation were evaluated. It was found that the catalytic activities of Mn5Cu/Ti-Sep were higher than those of 5Cu/Ti-Sep and 30Mn/Ti-Sep, and the Mn/Cu molar ratio had a distinct influence on catalytic activity of the sample. Among the Mn5Cu/Ti-Sep samples, the 30Mn5Cu/Ti-Sep catalyst showed the best activity (which also outperformed the 30Mn5Cu/Sep catalyst), giving the highest reaction rate of 0.875 × 10 mmol·g ·s and the lowest and of 56°C and 86°C, respectively. Moreover, the 30Mn5Cu/Ti-Sep possessed the best low-temperature reducibility, the lowest O desorption temperature, and the highest surface Mn /Mn atomic ratio. It is concluded that factors, such as the strong interaction between the copper or manganese oxides and the Ti-Sep support, good low-temperature reducibility, and good mobility of chemisorbed oxygen species, were responsible for the excellent catalytic activity of 30Mn5Cu/Ti-Sep.

关键词: Ti-modified sepiolite     Supported Mn-Cu mixed oxide     Low-temperature reducibility     Strong metal-support interaction     CO oxidation    

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1224-1236 doi: 10.1007/s11705-022-2139-1

摘要: Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.

关键词: Fischer–Tropsch synthesis     titanium incorporation     mesoporous silica     metal-support interactions     C5+ selectivity    

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells

《能源前沿(英文)》 doi: 10.1007/s11708-023-0907-3

摘要: Platinum (Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction. Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper. The design thoughts and synthesis of various isolated, alloyed, and nanoparticle-contained Pt SACs are summarized. The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts. To advance further research and development of Pt SACs for viable implementation in PEMFCs, various technical challenges and several potential research directions are outlined.

关键词: oxygen reduction electrocatalysis     Pt single-atom catalysts     conventional Pt-based catalysts     design thoughts and synthesis     metal-support interactions    

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 236-242 doi: 10.1007/s11783-010-0218-8

摘要: Copper and zinc interaction on clearance from water and distribution in different tissues was investigated for the freshwater mussel, , under laboratory conditions. Clearance rate of Cu or Zn from water was highly dependent on exposure concentration. Interaction effect was most evident at 300 μg·L Cu exposure and depressed the Zn clearance rate significantly ( <0.05). However, the presence of 100 μg·L and 300 μg·L Zn hardly affected the Cu clearance rate. The 300 μg·L Cu presence enhanced Cu accumulation in each tissue most significantly ( <0.01), but caused Zn content to decrease in the gills by 62% ( <0.05), viscera by 49% ( <0.05) and foot by 31% ( <0.05), and increase in the mantle by 97% ( <0.05) and the muscles by 243% ( <0.05) for different Zn exposure treatments. The response of metal accumulation in various tissues of the test mussels indicated that Zn transferred from the gills, viscera and foot to the mantle and muscles might be one of the important characteristics of the Zn regulatory mechanism by leading to a narrow range of Zn concentration in the different tissues.

关键词: interaction     mussel     copper     zinc     clearance     distribution    

A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1633-0

摘要:

● pz-UiO-66 was synthesized facilely by a solvothermal method.

关键词: Pyrazine     Metal-organic frameworks     Copper removal     Strong acidity     High selectivity    

<strong>FESEstrong><strong>’s Best Papers of 2017strong>

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1051-x

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 929-938 doi: 10.1007/s11783-015-0795-9

摘要: Metal oxide nanoparticles like hydrated ferric oxide (HFO) or hydrated zirconium oxide (HZrO) are excellent sorbents for environmentally significant ligands like phosphate, arsenic, or fluoride, present at trace concentrations. Since the sorption capacity is surface dependent for HFO and HZrO, nanoscale sizes offer significant enhancement in performance. However, due to their miniscule sizes, low attrition resistance, and poor durability they are unable to be used in typical plug-flow column setups. Meanwhile ion exchange resins, which have no specific affinity toward anionic ligands, are durable and chemically stable. By impregnating metal oxide nanoparticles inside a polymer support, with or without functional groups, a hybrid nanosorbent material (HNM) can be prepared. A HNM is durable, mechanically strong, and chemically stable. The functional groups of the polymeric support will affect the overall removal efficiency of the ligands exerted by the Donnan Membrane Effect. For example, the removal of arsenic by HFO or the removal of fluoride by HZrO is enhanced by using anion exchange resins. The HNM can be precisely tuned to remove one type of contaminant over another type. Also, the physical morphology of the support material, spherical bead versus ion exchange fiber, has a significant effect on kinetics of sorption and desorption. HNMs also possess dual sorption sites and are capable of removing multiple contaminants, namely, arsenate and perchlorate, concurrently.

关键词: ion exchange     sorption     arsenic     perchlorate     fluoride    

<strong>Photosynthesis and related metabolic mechanism of promoted rice (strong><strong>Oryza sativastrong><strong> L.) growth by TiOstrong><strong>2strong><strong> nanoparticlesstrong>

Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu

《环境科学与工程前沿(英文)》 2020年 第14卷 第6期 doi: 10.1007/s11783-020-1282-5

摘要: Abstract • The rice growth was promoted by nano-TiO2 of 0.1–100 mg/L. • Nano-TiO2 enhanced the energy storage in photosynthesis. • Nano-TiO2 reduced energy consumption in carbohydrate metabolism and TCA cycle. Titanium dioxide nanoparticle (nano-TiO2), as an excellent UV absorbent and photo-catalyst, has been widely applied in modern industry, thus inevitably discharged into environment. We proposed that nano-TiO2 in soil can promote crop yield through photosynthetic and metabolic disturbance, therefore, we investigated the effects of nano-TiO2 exposure on related physiologic-biochemical properties of rice (Oryza sativa L.). Results showed that rice biomass was increased >30% at every applied dosage (0.1–100 mg/L) of nano-TiO2. The actual photosynthetic rate (Y(II)) significantly increased by 10.0% and 17.2% in the treatments of 10 and 100 mg/L respectively, indicating an increased energy production from photosynthesis. Besides, non-photochemical quenching (Y(NPQ)) significantly decreased by 19.8%–26.0% of the control in all treatments respectively, representing a decline in heat dissipation. Detailed metabolism fingerprinting further revealed that a fortified transformation of monosaccharides (D-fructose, D-galactose, and D-talose) to disaccharides (D-cellobiose, and D-lactose) was accompanied with a weakened citric acid cycle, confirming the decrease of energy consumption in metabolism. All these results elucidated that nano-TiO2 promoted rice growth through the upregulation of energy storage in photosynthesis and the downregulation of energy consumption in metabolism. This study provides a mechanistic understanding of the stress-response hormesis of rice after exposure to nano-TiO2, and provides worthy information on the potential application and risk of nanomaterials in agricultural production.

关键词: Nano-TiO2     Rice     Photosynthesis     Metabolomics     Energy storage    

<strong>Adsorption characteristics of ciprofloxacin onto g-MoSstrong><strong>2strong><strong> coated biochar nanocompositesstrong>

Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu

《环境科学与工程前沿(英文)》 2020年 第14卷 第3期 doi: 10.1007/s11783-019-1218-0

摘要: The g-MoS2 coated composites (g-MoS2-BC) were synthesized. The coated g-MoS2 greatly increased the adsorption ability of biochar. The synergistic effect was observed for CIP adsorption on g-MoS2-RC700. The adsorption mechanisms of CIP on g-MoS2-BC were proposed. The g-MoS2 coated biochar (g-MoS2-BC) composites were synthesized by coating original biochar with g-MoS2 nanosheets at 300°C(BC300)/700°C (BC700). The adsorption properties of the g-MoS2-BC composites for ciprofloxacin (CIP) were investigated with an aim to exploit its high efficiency toward soil amendment. The specific surface area and the pore structures of biochar coated g-MoS2 nanosheets were significantly increased. The g-MoS2-BC composites provided more π electrons, which was favorable in enhancing the π-π electron donor-acceptor (EDA) interactions between CIP and biochar. As a result, the g-MoS2-BC composites showed faster adsorption rate and greater adsorption capacity for CIP than the original biochar. The coated g-MoS2 nanosheets contributed more to CIP adsorption on the g-MoS2-BC composites due to their greater CIP adsorption capacity than the original biochar. Moreover, the synergistic effect was observed for CIP adsorption on g-MoS2-BC700, and suppression effect on g-MoS2-BC300. In addition, the adsorption of CIP onto g-MoS2-BC composites also exhibited strong dependence on the solution pH, since it can affect both the adsorbent surface charge and the speciation of contaminants. It was reasonably suggested that the mechanisms of CIP adsorption on g-MoS2-BC composites involved pore-filling effects, π-π EDA interaction, electrostatic interaction, and ion exchange interaction. These results are useful for the modification of biochar in exploiting the novel amendment for contaminated soils.

关键词: Adsorption     Ciprofloxacin     g-MoS2 nanosheets     Biochar     Soil remediation    

<strong>A newly defined dioxygenase system from strong><strong>Mycobacterium vanbaaleniistrong><strong> PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatichydrocarbonsstrong>

Yiquan Wu, Ying Xu, Ningyi Zhou

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1193-5

摘要: • Mycobacterium vanbaalenii PYR-1 utilizes PAHs at different rates. • Both NidA3B3 and FNidA3B3 catalyze high-molecular-weight PAHs dihydroxylation. • NidA3B3 shows an enhanced activity with an endogenous electron transport chain. • FNidA3B3 has an enhanced activity by 50% approximately compared with NidA3B3. • FNidA3B3/NidA3B3 and NidAB in the same strain come from different ancestors. NidA3B3 is a terminal dioxygenase whose favorable substrates are high-molecular-weight polyaromatic hydrocarbons (PAHs) from Mycobacterium vanbaalenii PYR-1, a powerful PAHs degradation strain. NidA3B3 was reported to incorporate a dioxygen into the benzene ring of PAHs when equipped with an exogenous electron transport chain components PhdCD from Nocardioides sp. strain KP7 by biotransformation, but this enzyme system was not particularly efficient. In this study, strain PYR-1 was confirmed to utilize four different PAHs at different growth rates. When PhtAcAd, an endogenous electron transport chain of a phthalate dioxygenase system, was substituted for PhdCD to couple with NidA3B3, the specific activity to convert phenanthrene by strain BL21(DE3) [pNidA3B3-PhAcAd] was 0.15±0.03 U/mg, but the specific activity of strain BL21(DE3) [pNidA3B3-PhdCD] was only 0.025±0.006 U/mg. In addition, FNidA3, encoded by a newly defined ORF, has a prolonged 19-amino acid sequence at the N-terminal compared with NidA3. FNidA3B3 increased the activity by 50% approximately than NidA3B3 when using PhtAcAd. Components of the electron transport chain PhtAc and PhtAd were purified and characterized. The Km, kcat, kcat/Km values of the PhtAd were 123±26.9 M, 503±49.9 min−1, 4.1 M−1·min−1, respectively. And the Km, kcat, kcat/Km values of the ferredoxin PhtAc were 52.5±9.7 M, 3.8±0.19 min−1 and 0.07 M−1·min−1, respectively. Basing on the phylogenetic analysis, NidA3/FNidA3 were far from its isoenzyme NidA from the same strain. Combining their primary differences of transcriptional pattern in vivo, it indicated that the functionally similar Rieske dioxygenases NidA3B3/FNidA3B3 and NidAB might originate from different ancestors.

关键词: Biodegradation     polyaromatic hydrocarbons     biotransformation     ring-hydroxylating dioxygenase system    

Selective hydrogenation of acetylene over Pd/CeO

Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 929-936 doi: 10.1007/s11705-019-1912-2

摘要: Five hundred ppm Pd/CeO catalyst was prepared and evaluated in selective hydrogenation of acetylene in large excess of ethylene since ceria has been recently found to be a reasonable stand-alone catalyst for this reaction. Pd/CeO catalyst could be activated by the feed gas during reactions and the catalyst without reduction showed much better ethylene selectivity than the reduced one in the high temperature range due to the formation of oxygen vacancies by reduction. Excellent ethylene selectivity of ~100% was obtained in the whole reaction temperature range of 50°C–200°C for samples calcined at temperatures of 600°C and 800°C. This could be ascribed to the formation of Pd Ce O or Pd-O-Ce surface species based on the X-ray diffraction and X-ray photoelectron spectroscopy results, indicating the strong interaction between palladium and ceria.

关键词: selective hydrogenation     acetylene     Pd/CeO2     strong interaction    

Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism

Xingling Zhao, Jun Xu, Feng Deng

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 159-187 doi: 10.1007/s11705-019-1885-1

摘要: Metal-containing zeolite catalysts have found a wide range of applications in heterogeneous catalysis. To understand the nature of metal active sites and the reaction mechanism over such catalysts is of great importance for the establishment of structure-activity relationship. The advanced solid-state NMR (SSNMR) spectroscopy is robust in the study of zeolites and zeolite-catalyzed reactions. In this review, we summarize recent developments and applications of SSNMR for exploring the structure and property of active sites in metal-containing zeolites. Moreover, detailed information on host-guest interactions in the relevant zeolite catalysis obtained by SSNMR is also discussed. Finally, we highlight the mechanistic understanding of catalytic reactions on metal-containing zeolites based on the observation of key surface species and active intermediates.

关键词: metal-containing zeolites     solid-state NMR     active site     host-guest interaction     reaction mechanism    

<strong>Fabrication and photocatalytic ability of an Au/TiOstrong><strong>2strong><strong>/reduced graphene oxide nanocompositestrong>

Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su

《环境科学与工程前沿(英文)》 2018年 第12卷 第1期 doi: 10.1007/s11783-017-0977-8

摘要: A new type of Au/TiO /reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO and RGO. Au/TiO /RGO had a better photocatalytic activity than Au/TiO for the degradation of phenol. Electrochemical measurements indicated that Au/TiO /RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO /RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO /RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO to effectively reduce photogenerated charge recombination.

关键词: Reduced graphene oxide     Au     TiO2     Nanocomposite     Photocatalysis    

标题 作者 时间 类型 操作

Catalytic oxidation of CO over Pt/Fe

Zihao Li, Yang Geng, Lei Ma, Xiaoyin Chen, Junhua Li, Huazhen Chang, Johannes W. Schwank

期刊论文

FeNi/Al-Ce-O催化剂上的乙烷干重整——组成诱导的金属-载体强相互作用

张涛, 刘志成, 叶迎春, 王毓, 杨贺勤, 高焕新, 杨为民

期刊论文

Excellent performance of Cu-Mn/Ti-sepiolite catalysts for low-temperature CO oxidation

Yong Song,Lisha Liu,Zhidan Fu,Qing Ye,Shuiyuan Cheng,Tianfang Kang,Hongxing Dai

期刊论文

The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts

期刊论文

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells

期刊论文

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

期刊论文

A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions

期刊论文

<strong>FESEstrong><strong>’s Best Papers of 2017strong>

期刊论文

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

期刊论文

<strong>Photosynthesis and related metabolic mechanism of promoted rice (strong><strong>Oryza sativastrong><strong> L.) growth by TiOstrong><strong>2strong><strong> nanoparticlesstrong>

Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu

期刊论文

<strong>Adsorption characteristics of ciprofloxacin onto g-MoSstrong><strong>2strong><strong> coated biochar nanocompositesstrong>

Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu

期刊论文

<strong>A newly defined dioxygenase system from strong><strong>Mycobacterium vanbaaleniistrong><strong> PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatichydrocarbonsstrong>

Yiquan Wu, Ying Xu, Ningyi Zhou

期刊论文

Selective hydrogenation of acetylene over Pd/CeO

Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang

期刊论文

Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism

Xingling Zhao, Jun Xu, Feng Deng

期刊论文

<strong>Fabrication and photocatalytic ability of an Au/TiOstrong><strong>2strong><strong>/reduced graphene oxide nanocompositestrong>

Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su

期刊论文